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Uniprocessor Performance Enhancement
through Adaptive Clock Frequency Control

Augustus K. Uht, Member, IEEE

Abstract—Uniprocessor designs have always assumed worst-case operating conditions to set the operating clock frequency and,
hence, performance. However, much more performance can be obtained under typical operating conditions through experimentation,
but such increased frequency operation is subject to the possibility of system failure and, hence, data loss/corruption. Further, mobile
CPUs such as those in cell phones/internet browsers do not adapt to their current surroundings (varying temperature conditions, etc.)
so as to increase or decrease operating frequency to maximize performance and/or allow operation under extreme conditions. We
present a digital hardware design technique realizing adaptive clock-frequency performance-enhancing digital hardware; the technique
can be tuned to approximate performance maximization. The cost is low and the design is straightforward. Experiments are presented
evaluating such a design in a pipelined uniprocessor realized in a Field Programmable Gate Array (FPGA).

Index Terms—Hardware, emerging technologies, better-than-worst-case performance, adaptive system design, computer design.

INTRODUCTION AND BACKGROUND

1
EVER since synchronous digital systems were first
proposed, it has been necessary to make the operating
frequency of a system much less than necessary in typical
situations to ensure that the system operates correctly
assuming worst-case conditions, both operating and manu-
facturing. The basic clock period of the system is padded with
a guard band of extra time to cover extreme conditions. There
are three sources of time variation requiring the guard band.
First, the manufacturing process has variations which can
lead to devices having greater delay than the norm. Second,
adverse operating conditions such as temperature and
humidity extremes can lead to greater device delays. Last,
one must allow for the data applied to the system to take the
worst delay path through the logic.

However, none of these extremes is likely to be present
in typical operating conditions. The only known method to
still obtain typical delays in all cases is to change the basic
model to an asynchronous model of operation [6]. But, this is
undesirable: Asynchronous systems are notoriously hard to
design and there are few automated design aids available
for asynchronous systems.

This paper proposes a Timing Error Avoidance technique
(TEAtime) to realize typical delays using standard synchro-
nous design methodologies; the typical-delay operation
achieves better-than-worst-case performance. TEAtime uses
a test circuit composed of a delay-augmented 1-bit wide
version of the system’s critical path(s). The system'’s clock
frequency is continuously increased until a failure occurs in
the test circuit, but before a failure can occur in the real
logic; the frequency is then reduced. TEAtime is thus able to
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take advantage of typical operating conditions and realize
substantially higher-than-normal performance. The extra
cost is small. The technique is applicable to any synchro-
nous digital system. Correct results are ensured if the
design guidelines are followed. Neither the base cycle time
nor the cycle count are affected by TEAtime. It is also easy
to modify current designs to take advantage of TEAtime.
In order to demonstrate TEAtime’s capabilities and
correct operation, we implemented a simple CPU and
memory on a Xilinx FPGA (Field Programmable Gate
Array) and ran it under various operating conditions. Over
a wide range of temperatures, TEAtime demonstrated
performance improvements of about 34 percent over the
baseline machine’s worst-case specified performance.
TEAtime adapted automatically to changing conditions,
always stabilizing to a steady operating clock frequency.
The remainder of this paper is organized as follows:
Related work is reviewed in Section 2. In Section 3, the basic
ideas of timing error avoidance are presented, using our test
CPU as a case study. Our experimental methodology is
described in Section 4, with the experimental results
presented in Section 5. We conclude in Section 6.

2 RELATED WORK

There has been prior work somewhat similar to ours, but
nothing that encompasses all of the attributes of our
technique or actually demonstrates its functioning and
characteristics with a real prototype. The closest work we
are aware of is [17]. In this work, a microcontroller has been
modified so that it can self-tune its clock for “maximum”
frequency. It does this by periodically pausing computation
for up to 68 cycles, during which time it forces extreme
inputs (1 and all 1s) into the ALU. (The ALU has the longest
critical path.) The output of the adder is checked: If it is
correct, the frequency is increased; if incorrect, the
frequency is decreased by a safety margin, at which time
the computation resumes. This scheme takes advantage of
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some attributes of typical delays, but must pause operation
to perform its tuning, reducing its performance gains. It also
assumes that the critical (longest) delay path is through the
adder, which is relatively easy to check; what if the critical
path is through some other part of the circuitry?

In TEAtime, one or more copies of the worst-case path(s)
through the system, similar to replicates, are used to
determine whether the clock frequency should be increased
or decreased. While replicates have been used before (see,
for example, [11], [15], [22]), they have been primarily used
to improve such things as power consumption for a given
and fixed frequency, i.e., dynamic voltage-scaling in [11], [21],
or to provide self-timing for high-speed subsystems [22].
Such methods are also more complex than TEAtime’s. Last,
it is not clear if the latter methods allow better-than-worst-
case operation; certainly, it was not their aim with respect to
improving a system’s performance.

Another related approach in earlier work is to reduce
overall energy consumption by operating a processor at
lower than peak frequency during idle or less-demanding
periods. It does this by determining the necessary frequency
of a microprocessor to execute a given application in a given
amount of time, then adjusting the supply voltage to
achieve that frequency [3]; this reduces energy consump-
tion, again via dynamic voltage scaling. While the work is
impressive (the system was actually built on custom chips),
it is not directly related to TEAtime: In [3], the maximum
throughput remains the worst-case maximum throughput,
so there is no improvement in performance, just energy
efficiency. Further, the operating system is used both to
determine the desired operating frequency and to control it.
TEAtime operation requires no software inputs or interac-
tion. Also in [3], a ring-oscillator is used as a substitute for
the worst-case path. A ring oscillator does basically adapt to
varying temperatures and process variations, but is an
imperfect approximation to the worst-case path through a
system, especially under a wide range of operating
conditions. Further, the oscillator is open-loop; errors are
not detected. It is also not easily expandable to handle
multiple worst-case paths without reducing the largest
performance possible (the safety margin must be greater
than with a TEAtime approach).

There has been a large amount of work on asynchronous
systems. See, for example, [13] for a description of the first
asynchronous microprocessor and [6] for a brief tutorial on
modern asynchronous circuit design. Such design techni-
ques either use much more hardware than synchronous
ones (self-timed circuits) or are very hard to design (delay
matching) [20]. The latter is not helped by the dearth of
robust design tools for asynchronous systems, although
work is continuing. Attempts have been made to adapt
existing synchronous tools for asynchronous system use,
but with limited success [10].

There have been many methods created to improve the
performance of synchronous circuits. The main approach is
to retime [12] the registers or latches so as minimize the
worst-case necessary clock period. This is done by a variety
of methods, including moving the registers or latches in the
circuit. Software pipelining has been applied to synchro-
nous digital circuits to generate optimal clocking schemes

[2]. However, worst-case delays between storage elements
must still be maintained.

Multisynchronous systems [7] have also been proposed in
which the circuitry on a chip is divided into semi-
autonomous modules, each with its own clock. All of the
clocks have the same frequency, but may be out of phase.
This addresses part of the worst-case timing problem, but
only at the system level, handling part of the chip clock
drive problem. In the general case, Globally-Asynchronous
Locally-Synchronous Systems (GALS) [4] have been widely
studied. GALS methods could be employed in a TEAtime-
based system to interconnect any necessarily fixed-fre-
quency elements with the TEAtime-based elements. This
would be particularly helpful in larger systems.

Wave pipelined arithmetic units have been proposed,
but have implementation difficulties [5], [16], including the
inability to easily stall the pipeline, since it depends on
time-of-flight data storage (like a mercury delay-line). The
design of such devices is also difficult; it is hard to ensure
that signals arrive at the same time.

In a common existing method used in laptop computers,
the temperature of the processor is measured and fed back
to control (throttle) the operating frequency. This only
adjusts for one parameter and usually the frequency is not
increased above the nominal operating frequency. In
AMD’s PowerNow method [1], processing power can be
supplied on demand, but overall performance is not
improved. Intel also has power-saving technologies such
as Centrino [8] and SpeedStep [9]; likewise, overall
processing performance is not improved. In [14], a control
technique is given that does allow the frequency to
improve. However, it is an open-loop system, errors in
any form are not explicitly detected, and the temperature
and voltage changes are only estimated. No prototype was
built. Our approach subsumes many of the benefits of such
systems and can take advantage of more of the typically
valued parameters in a system.

In [19], a hybrid synchronous/asynchronous system is
proposed having an on-chip clock generator whose fre-
quency tracks changes in operating temperature and voltage.
Therefore, the system is able to partially take advantage of
typical operating and manufacturing conditions. However, it
is an open-loop system: Errors are not detected or modeled;
this limits its effectiveness. Its approach to the possibility of
metastability is to stop its clock for an indefinite period; this is
not desirable, especially in real-time systems. It is also an
expensive system, requiring specialized clock buffering. No

prototype was built.
In prior work, we devised a system called TIMERRTOL

[23] in which timing errors were actually detected and
tolerated by using two specially wired copies of the
pipeline. However, while adapting to existing conditions,
it was quite expensive, required substantial redesign of the
target system, and required high fan-in comparators,
potentially impacting the nominal cycle time. TEAtime
greatly improves on TIMERRTOL.



134

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.2, FEBRUARY 2005

E 01 — new hardware for TEAtime i

i alter- Delay: ~Combinational CT}’Imllf(lg i

i P nator| ] Logic delay 7 A ecker 4>| - A Counter I i

! > e - Combinational ) Pipe ! :
! Plregister—7—> Logic 7F—TP»|registerp------- > | !
| . G E a
= — | a
1 1 I
| original system (CPU) E i
system Clock '

&
~

NOTES: -w,x>>1; -DAC: Digital-to-Analog Convertor ;
Fig. 1. Timing Error Avoidance (TEAtime) block diagram.

3 TiMING ERROR AVOIDANCE

3.1 Crux of the Idea

The basic idea of Timing Error Avoidance is to use extra
logic with the delay of the longest path between pipeline
registers, or the equivalent, to test on a cycle-by-cycle basis
whether or not the system Clock is too fast or too slow. That
is, if a signal applied to the input of the delay test logic
(similar to a replicate) appears at the output of the test logic
within the time of the machine’s slowest path, speed up the
Clock or, if it is greater than that of the critical path delay,
minus a safety margin, slow down the Clock. Thus, since
the delay test logic’s characteristics (delay, etc.) mirror those
of the main logic (they are realized close together on the
same chip), the system Clock adapts both to dynamic
environmental conditions, including temperature and oper-
ating voltage, as well as to statically varying manufacturing
conditions.

In greater detail, the delay test logic is composed of the
following design/construction and operation elements; see
Fig. 1:

Determine the critical path between register elements
within a digital machine. In the case of a pipelined CPU,
this means to determine the slowest (clock-period deter-
mining) stage and the critical (longest, timewise) path
through that logic.

Construct a one-bit wide version of that logic in which a
change at the one-bit version’s input from a logic 0-to-1 or a
1-to-0 propagates all the way through to the end of the logic.
This delay test logic is not connected to any of the regular
logic of the machine. However, the delay test logic

- VCO: Voltage-Controlled Oscillator.

nominally has the same delay as the worst-case path
through the machine.

Drive the delay test logic with alternating 1s and Os, the
latter synchronized with the system Clock. The location of
this test input corresponds to the output of the beginning
pipeline register of the slowest pipeline stage in a CPU.

At the end of every cycle, if the test data has not reached
the output register of the pipeline stage before the system
Clock edge, then the system is operating slower than it
might and the system Clock frequency is increased. If,
however, the test data has reached the output register, then
the system Clock frequency is getting close to the system’s
limit and, thus, the system Clock frequency is reduced.

The basic components of the variable system Clock are
also shown in Fig. 1. They are standard logic and analog
elements: an up/down counter to drive the DAC, which in
turn generates an analog voltage to drive the VCO; hence,
the counter sets the frequency of the system Clock. (In the
example system, the counter is always changing and, by at
most 1, up or down.) With advances in VLSI technology, all
of these elements should be realizable on the same chip as
the system. Note that, since there is an explicit feedback
loop from the system Clock to the counter’s setting, the
absolute value of the counter is not important, only that it
be able to go up and down with the timing checking
circuitry’s commands.

3.2 Other TEAtime Details

In order to show the simplicity of the main TEAtime
circuitry, we provide low-level details of its realization in
Fig. 2. The alternating 1s and Os are created by a Flip-Flop

p 0.1 D J
nator Delay: Checker /
> Q 7 mimics 1-bit wide version —P Q dgwn
1 of Combinational Logic R

periodic reset

P
<

system Clock

Fig. 2. Details of the central TEAtime circuitry. Other than the delay test logic, only two gates and two flip-flops are needed. See Fig. 3 for the

corresponding timing diagram.
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wired for toggle operation. The delay test logic (not shown)
as used in the example system herein consists of a one-bit
slice through an address multiplexer, the CPU’s register file,
the bypass multiplexer used for operand forwarding in the
CPU (to reduce data dependencies), and a zero-detecting
comparator (across the whole data path width).

The exclusive-OR gate normalizes the delayed signal so
as to present a signal to the timing checker with the same
polarity, regardless of the output of the toggle flip-flop. The
following OR gate is used to latch a “decrease Clock
frequency” signal if it occurs at any check time over the
course of hundreds or thousands of cycles. The Clock
frequency is then changed appropriately and a “periodic
reset” signal is applied to the TEAtime circuitry.

The delay of the delay test logic is adjusted at system
design time to be slightly greater than that of the
aforementioned critical path to give a suitable safety
margin. This is a relatively simple procedure when a
high-quality logic simulator is used in the design process. In
the case of our example CPU system, a structural simulation
was performed on the CPU running the test program. This
produced detailed timing information for every path in the
CPU. From this information, we obtained both the worst-
case operating frequency for a non-TEAtime (baseline) CPU
and checked the performance of the TEAtime logic to
ensure that the system Clock frequency was reduced before
the timing constraints of the regular CPU logic were
violated; hence, Timing Error Avoidance was guaranteed.

3.3 Dealing with the Possible Metastability in the
Timing Checker

So far so good, everything seems pretty simple and
straightforward. However, there is one place in the
TEAtime system as so far described where system failure
can occur; this is at the input of the Timing Checker, where
the delayed signal is latched into a flip-flop. Since the
delayed signal can be positioned anywhere in time and is
not synchronized with the system Clock, there is the
possibility that the delayed test signal could change value
at the same time as the signal is being latched in the Timing
Checker. This can result in metastability at the output of the
timing checker in which the physical value of the logic
output signal of the Checker’s flip-flop is neither 0 or 1. It is
well-known that metastable signals can stay in this state
indefinitely, leading to misinterpretation of the signal’s
value by the rest of the system’s logic; hence, system
malfunction would ensue.

Our approach to this problem is to reduce the likelihood
of metastability to a negligible level. (This is a common
approach since there is no known way to eliminate the
possibility of metastability in a synchronous system with
one or more asynchronous inputs. In practice, every
synchronous system falls into this category.)

In TEAtime, the frequency is only changed infrequently,
roughly once for hundreds or thousands of cycles. There-
fore, since D; in Fig. 2 is sampled hundreds if not
thousands of times in between system clock frequency
changes and it only has to indicate an error once during that
time to force a reduction in the frequency, the likelihood of
metastability occurring can be reduced to an arbitrarily low
level, that is, a negligible level.

Dy————— \: /
up/down =—=—-—" / :

Case 1: Increase/Decrease Freq.

\/
A

U/
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Case 2: Decrease/(Increase) Freq.

system Clock == —-—"

t, [

Fig. 3. Timing Checker/TEAtime detailed timing. (Refer to Fig. 2 for the
generating logic.) Briefly, the system Clock frequency is decreased if, for
any cycle between Timing Checker resets, the system is going too fast,
as indicated by the delay test logic. See the text for the detailed
explanation of the timing.

3.4 TEAtime Timing

The detailed timing of the TEAtime logic of Fig. 2 is shown
in Fig. 3. The timing of the D; 1-to-0 transition with respect
to the active clock edge determines whether the system is
going too fast or too slow. The detailed operation is as
follows: At some time prior to ¢, the Timing Checker was
reset, so the system can now potentially increase the system
Clock frequency. In Case 1, at t;, the delay test logic’s
timing has not been violated, that is, the 1-to-0 D, transition
has come before the active clock edge, so the Timing
Checker still wants to increase the system Clock frequency.
However, at ty, the delay test logic’s delay is now greater
than the system Clock period, that is, the 1-to-0 D, transition
comes after the active clock edge and, thus, the timing has
been violated, so the Timing Checker switches to cause an
eventual decrease in the system Clock frequency.

In Case 2, the (almost) reverse happens. At ¢;, the system
is running too fast, so the Timing Checker switches to cause
a decrease in system Clock frequency. Now, at time ¢, the
delay test logic’s delay is less than the Clock period, so,
theoretically, the system Clock frequency could be in-
creased. However, the Timing Checker has already been
latched into the “decrease Clock frequency” state and, thus,
stays in that state until the Checker is again reset after the
system Clock frequency is decreased, possibly hundreds or
thousands of cycles later. The system Clock frequency is
only increased if the delay test logic’s delay is less than the
system Clock period, that is, is safe, for every cycle between
Timing Checker resets.

3.5 TEAtime Summary and Analysis

The TEAtime logic is very cheap and conceptually
straightforward. For a given CPU, say 32 bits, the hardware
cost of the delay test logic is less than 1/32 of the cost of the
slowest pipeline stage. The variable frequency oscillator
adds a lttle more cost, but this is quite small.

Should a CPU or other digital system have two or more
pipeline stages of similar delay, they are all treated as
described herein for the single stage case, with a “decrease
Clock frequency” signal from any of them having priority
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TABLE 1
UUT (Unit-Under-Test) CPU Characteristics

CPU Architectural Features

Size or Description

General CPU type

RISC (DLX-style)

Data word width

32 reduced to 8 bits

Instruction word width 32 bits
Memory bus width 32 bits
Number of instructions in the architecture 25
Number of General Purpose Registers (GPR) 16

CPU Microarchitectural Features

Size or Description

Data path type

Pipelined

Number of stages

5

Stage types

IF/ID-OF/EX/MEM/WB'

GPR accessing

Write then Read in same cycle (DLX-style)

Stage interconnections

Full data-forwarding

Branch prediction

Static, always ‘not taken’

1. Instruction Fetch; Instruction Decode & register Operand Fetch; EXecute operation; load or store MEMory operation; register Write Back.

for the setting of the Clock frequency. Put another way,
multiple TEAtime circuits are used to handle a complex
microprocessor or system, such as the Intel Pentium 4, that
might have hundreds or thousands of critical or near-
critical paths. In such a case, a TEAtime circuit, Fig. 2, is
made for each of these paths and is placed with its
associated path as usual. If any one of these TEAtime
circuits indicates a “decrease Clock frequency” signal, the
system clock frequency is decreased. Thus, there is a chip-
wide OR-circuit to generate the overall “decrease” signal.
Since there are hundreds or thousands of system clock
cycles per system clock frequency change, the OR circuit
construction is not critical; there is plenty of time for such a
large fan-in circuit to produce its output. A wired-OR
implementation is likely.

4 EXPERIMENTAL METHODOLOGY

Our experimental goals were to realize TEAtime on a
reasonably complex real digital system (a CPU) to demon-
strate TEAtime’s functionality, performance, and adapt-
ability to changing conditions.

The TEAtime ideas were tested and evaluated on a
32/8 bit pipelined CPU designed in the mold of that in [18].
Two sets of experiments were performed:

1. Basic functionality and stabilization testing with
performance evaluation.

2. Adaptive abilities of TEAtime to temperature
changes.

4.1 CPU Characteristics

The CPU has a 32-bit data path to memory and 32-bit wide
instructions. It was originally designed in the DLX [18]
RISC style for use in the URI undergraduate computer
engineering curriculum. See the “ICED” website for
detailed information on the source CPU [24]; a summary
of the CPU'’s salient features is given in Table 1. An FPGA
was used to realize the CPU, its memory, the system
controller, and the TEAtime logic. Mentor Graphics and
Xilinx CAD tools were used for the design process. The
internal data paths of the CPU were reduced to 8-bits wide

to keep the design small and allow for rapid design
changes. (The instruction width stayed at 32 bits.) The
CPU was pipelined and employed full register operand
forwarding for minimal register data dependencies.

4.2 Test Program Characteristics

The test program for the CPU was written to be small
(28 static instructions) so as to fit in the equivalent of a small
32 4-byte word cache memory on the FPGA (one cycle
access time). Pseudocode of the Assembly program is
shown in Table 2; a listing of the Assembly code itself may
be found on the Web [25]. The function of the test program
was to go through a small randomized set of positive and
negative numbers and create two sums: one of the positive
numbers and one of the negative numbers, with these
results stored in the externally accessible cache. While the
test program was quite small, all of the usual functions were
performed, including forward and backward conditional
branching, subroutine calling, and logic and arithmetic
functions. The worst-case critical path through the CPU’s
logic was exercised.

4.3 The Experimental Equipment and Setup
The experiment setup is shown in Fig. 4. The major
components include the 100,000 gate equivalent Xilinx
FPGA mounted on the XESS Corporation evaluation board,
the XESS board itself, additionally containing the Host PC
interface and the reference oscillator (~25.0 MHz). The latter
operated at a frequency well below the system Clock
frequency and was used to drive the interface and the CPU
controller so as to make sure they did not affect the results.

The reference oscillator was also used to measure the
system Clock frequency. The reference clock cycles were
counted during test program execution; since the test
program ran in a constant 194 system Clock cycles, the
system Clock frequency was readily computed from the
reference clock cycle count and its frequency.

The breadboard was a home-brew affair, containing the
10-bit DAC and the 25-100 MHz VCO, as well as supporting
circuitry. The DAC and the VCO were each one integrated
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TABLE 2
C-Like Pseudocode of the Test Program

Label Instruction
negsum = 0;
possum = 0;
mask = 0x80;
i=0;
dataptr = &data;
stackptr = &stack;
loop: datumptr = dataptr + i;
temp = *(datumptr +0);
*(stackptr +0) = temp;
call elmnt;
i++;
test=1-17;
if (test !=0) goto loop;
*(dataptr + 8) = negsum;
*(dataptr + 9) = possum;
halt;
elmnt: temp2 = *(stackptr +0);
temp3 = temp2 — 0;
temp3 = temp3 & mask;
if (temp3 == 0) goto pos;
negsum = negsum + temp2;
if (0 == 0) goto ret;
pos: possum = possum + temp2;
ret: return;
data: 0xf00238f9
0x0ffde700 /
"
results: 0x00ffeedd
stack: Ox[Ereeee

Comment

/finitialize running sum of negative numbers
//initialize running sum of positive numbers
//mask for MSB of a byte

//initialize loop counter (will loop for 8 data)
//initialize pointer to data

//initialize pointer to stack

/lcreate pointer to current data byte

/Noad first data byte (o a temp variable (register)
/Iput the temp on the stack

//jump to the subroutine (with branch-and-link instr.)
/lapdate the loop counter

/Isee if done with looping

//backwards conditional branch forming loop

//save the sum of the negative numbers in memory
/lsave the sum of the positive numbers in memory
/lend of program, pass control back to host

//start of subroutine; get the datum off of the stack
//[dummy instruction

/ltest the MSB (to see if it’s a negative number)
//branch if it’s a positive number

//update the running sum of negative numbers
/lequivalent to unconditional branch to return statement
/fupdate the running sum of positive numbers

/findirect branch to return from elemnt subroutine

/Ipseudo-random data to be tested and added

8 bytes, total; 4 negative numbers interspersed
with 4 positive numbers

/Iwhere the two sums go (2 LS bytes); init. to garbage
/lone-word (4 byte) stack

This program uses 32 4-byte words of storage, including the input data and the results.

circuit. (Normally, of course, these would be on the same
chip as the digital system, but this is not essential.)

A thermocouple was attached to the center of the top of
the FPGA with thermal grease and was used by the METEX
meter to measure the case temperature of the digital system.

The XESS board and the breadboard were mounted in a
cavity within the BMA environmental chamber. An
insulated hole in the chamber side provided access to the
contained circuitry for the PC and temperature meter. Only
a fraction of the possible temperature range of the chamber
was used. Since many of the non-FPGA components in the
chamber were only specified for operation at ambient
temperatures between 0 and 70 degrees Celsius, the

Host - Wintel PC 45 312345 | Mhz BMA Environmental Chamber
Heathkit frequency counter @ - manual temperature setting
hardware XESS XSA-100 Board 3
control & - — 8
generil Xface ’o Xilinx 5
data logging N Spun;}n 11 .
° @_, XC28100 3
= r® FPGA =
i = - 2
(" Scopeview ) 0028 oc B
tomperature [6H Metex | w @ &
data logzing . |¢For FPGA case breadboard

Fig. 4. TEAtime evaluation experimental setup.

chamber temperature was kept to within 5 and 65 degrees
Celsius. The chamber used an electric coil for heat and
carbon dioxide gas for cooling. Note that the FPGA is
specified for a much wider temperature range: A junction,
not ambient, temperature of 85 degrees Celsius maximum
to 0 degrees Celsius minimum for recommended operation
and 125 degrees Celsius absolute maximum with no
absolute minimum, so our results could be further im-
proved upon.

The frequency counter was used to precisely measure the
reference oscillator’s frequency at different temperatures, to
provide system Clock frequency calculation corrections.
The counter was also used to validate the on-chip system
Clock frequency measurements by measuring the system
Clock frequency directly. (It had no electronic interface, so it
could not be used for the actual high-speed data gathering.)

The Host PC ran the experiments with a home-brew
control program: xstet. xstet was also used for all of the data
logging, except for case temperature; the latter measure-
ments were logged by a separate program provided with
the METEX temperature meter.

4.4 Experimental Operation

A self-explanatory flowchart of the operation of the xstet
program and hence the experiments is shown in Fig. 5. Each
pass through the main loop took about 12 milliseconds and



138

Host (PC) UUT (Unit Under
Test) - CPU

load CPU design -
info FPGA g 4# configure FPGA ‘
‘ load CPU program }—# .. into memory ‘

y

‘ initialize Clock frequency

i

I reset system

y

‘ start CPU CPU executes program ‘

done
X done? program ends |
Y

v

adjust Clock frequency ‘

|

controller ’

CPU, controller l

|

.

check program results
for correctness

y

reset program results

...from memory I

[ 1]

in CPU memory to ...to memory ‘
incorrect values
get Clock frequency controller ‘

measurement data

" end of experiment?

%

Fig. 5. Experiment operation.

was primarily due to Host PC/interface delays. Once the
results from each run of the test program were read and
checked, the results” memory locations were overwritten
with junk to ensure that the following run produced correct
results.

Note that the actual system Clock frequency changing,
after initialization by the Host, was solely directed and
caused by the CPU and TEAtime hardware. Also, although
the system Clock frequency was only changed between test
program runs, this would not be necessary for a production
unit with a suitably designed system Clock having no
glitches during frequency changes. (The latter may be the
case with our oscillator, but, since it was not the point of the
study, we did not investigate it.)
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Fig. 6. Experiment Set 1, part A: TEAtime automatically rises to a high
frequency and then stabilizes at that point. The horizontal line at 30 MHz
indicates the approximate baseline worst-case operating frequency.

5 TEATIME EXPERIMENTS

5.1 Experiment Set 1: Basic Operation and
Stabilization

In these experiments the environmental chamber was not

used. All of the data were taken at room temperature

(Tambient = 22 degrees C).

The worst-case operating frequency of the CPU, as
determined through the structural simulations mentioned
earlier, was 35.7 MHz (period of 28 ns.). With a design safety
margin of 20 percent, this equates to what would be a non-
TEAtime specified operating frequency of about 29.8 MHz
(period of 33.6 ns.). The latter are our baseline conditions.

The results of part A of the first set of experiments are
shown in Fig. 6. The top subplot shows the value of the
up/down control line over time; this subplot is horizontally
aligned with the main subplot below it. It is seen that,
shortly after the starting frequency of about 25 MHz, the
system Clock rises steadily to its final stabilization
frequency of about 45.1 MHz. From a time (period)
perspective, this is a performance increase of 34.0 percent
over the baseline worst-case system Clock frequency. The
frequency also stabilizes rapidly, at a rate of about
8 MHz/sec. Note that, in both parts of this experiment, all
of the data is shown, so adjacent data in the plots were
adjacent during the experiments.

The main conclusions from this part are that TEAtime
works and provides a substantial performance gain under
typical operating conditions.

While part A represents a normal operating condition,
we were also curious as to both how high a frequency
TEAtime could go as well as how it would operate starting
from an elevated frequency. The results of this part, part B,
are shown in Fig. 7. As is seen from the plot, the system
Clock frequency can go as high as about 57.3 MHz and
TEAtime will still continue to function and produce correct
results. The frequency drops at the same rate as it rose in
part A and stabilizes at the same frequency as in part A.



UHT: UNIPROCESSOR PERFORMANCE ENHANCEMENT THROUGH ADAPTIVE CLOCK FREQUENCY CONTROL 139

-

Increase/
Decrease
Frequency

o

600

. 500
®
o
£ et i =
e . =
= 400 . 1 40,0
3 m.;w%mw =
e e q— oy
5 8
S 300 30.0] 3
5 T
o 2
= I
= -
a 200 1 20.0 g
5 smmmmmeees DAC input o
Clock Freq.

8 100 9 10.0

0 - - 0.0

0.0 0.5 1.0 1.5

Time (seconds)

Fig. 7. Experiment Set 1, part B: Decreasing-frequency stabilization. The
system stabilizes to the same frequency as in part A, this time with a
decreasing frequency. The horizontal line at 30 MHz indicates the
approximate baseline worst-case operating frequency.

The high possible starting frequency in part B indicates
both that this realization of TEAtime has a big safety margin
built into its design and that the delay test logic could
possibly be tuned for less delay to get more performance
and still maintain a good safety margin. Considering the
performance aspect, if operated at the 57.3 MHz frequency,
the TEAtime performance improvement would be about
48.1 percent. As implied earlier, a safety margin is still
needed so that that specific performance would not actually
be realized under these operating conditions.

5.2 Experiment Set 2: Temperature Change
Response

In this experiment (Part A), the chamber temperature

setting was changed twice: at time 0 from 25 to 65 degrees

C and at about time 1250 seconds from 65 to 5 degrees C.

The results are shown in Fig. 8. Both the system Clock
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Fig. 8. Experiment Set 2, Part A: TEAtime temperature change
response. Each datum is a run sample taken every second; the CPU
runs continuously, however.
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Fig. 9. Experiment Set 2, Part B: System Clock Frequency versus Case
Temperature. Only one datum per degree C is plotted.

frequency and the CPU case temperature were measured as
the temperature was varied.

As the results in Fig. 8 show, the system Clock frequency
tracks the changes in operating temperature. Note the
change in frequency scale from the prior plots; also note the
large granularity of system Clock frequency change. The
latter is an artifact of the coarse frequency measuring
system employed on the chip; the actual frequency steps are
finer, as can be seen in the prior plots.

Wealsonote that, as expected, performance improves with
lower temperatures. These results also show that TEAtime
readily adapts the system Clock frequency to existing
environmental conditions (at least for temperature changes).
We also see that TEAtime can adapt to quickly changing
temperatures, as well, at least as fast as 0.1 degree C/second.

(The two small gaps in the case temperature data were
due to temporary case temperature-data logging omis-
sions.)

Last, for Part B, data from experiment Part A was
combined with other similarly obtained temperature data to
produce the system Clock frequency versus case tempera-
ture plot of Fig. 9. In this plot, only one data point (a typical
value) for each unit temperature value was plotted. As the
plot shows, there is little or no hysteresis in the frequency
changes and the relationship between the two variables is
approximately linear.

6 CONCLUSIONS

In this paper, we have presented a simple and cheap
technique for improving performance of many, if not all,
synchronous digital systems, both simple and complex.
This technique, TEAtime, dynamically changes the system’s
frequency to enhance performance and adapt to the
system’s operating conditions. If tuned carefully, TEAtime
can come close to maximizing a system’s performance.

TEAtime was realized in physical hardware and its
functionality, performance gains, and adaptability were
verified.

We conclude that this is a viable and useful method to be
used in many if not most digital systems, especially
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embedded systems requiring high performance under
changing and possibly extreme environmental conditions.
Further, TEAtime may possibly help to increase manufac-
turing yields since the system would also be able to adapt to
static variations in its own construction.
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